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Abstract 

The problem of characterizing symmetric connections that are Levi-Civita connections of a 
pseudo-Riemannian metric is considered. A more or less complete solution of the problem in three 
dimensions is presented. In particular the single class of Levi-Civita connections whose metric is 
not determined up to a conformal factor by the curvature tensor alone is characterized in geometric 
terms. 
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1. Introduction 

One of  the oldest and apparently most difficult problems of  classical  differential geom- 

etry is to find necessary and sufficient conditions for a given symmetric connection V on 

an n-dimensional manifold M n to be the Levi-Civita connection of  some metric g. The 

solution depends on the value of  n, but only the case where n is two is truly easy - see 

Theorem 2.1 and also [ 12]. It is, however, possible to give an algorithm, that we consider in 

Section 2, that provides a solution to the problem, as was already known to several classical 

authors - see for example [7]. This algorithm is only a prescriptive solution and it is the 

principal aim of  the present paper to formulate an analog of  Theorem 2.1 in dimension three. 

Thus an optimal solution would be one that specifies geometric conditions in terms of  V, the 

curvature tensor R of  V and the higher-order covariant derivatives of  R. We propose to be a 

little vague about the exact smoothness conditions satisfied by V. We shall have to suppose 
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that various systems of linear equations have solutions of a constant dimension. In practice 
this can be achieved by restricting to certain open subsets of M n or else by assuming that 
V is real analytic. In the smooth category, however, such regularity conditions may not be 
satisfied. For a further discussion of this point see [11]. 

The existence problem for metrics has also been considered by Levine [7] in dimension 
two and in two, three and even n-dimensions by Cheng and Ni [24] .  Superficially, the 

approach of the latter authors would appear to resemble the one adopted here. They too 
consider a system of linear equations similar to that comprised in Eqs. (2.3) and (2.4). This 

system is solved and the result substituted back into the differential equations that express 
the compatibility of the metric with the connection. Unfortunately, the very complicated 

conditions derived, involving polynominal conditions in R and its first and second covariant 

derivatives, are not written in any tensorial manner so that their geometric significance is 

far from clear. In addition a certain genericity assumption concerning the solution of the 
linear system is made, whose meaning for V is uncertain. 

In two recent papers Edgar investigates a certain system of homogeneous linear equa- 
tions [5,6]. (Anticipating developments in Section 2, this system is essentially the same as 

Eq. (2.8) with k having the value zero.) Edgar is able to obtain some metric existence results 
by using Petrov's classification of space-time metrics to ensure that this linear system has 
maximal rank. 

The main conclusion of the present paper may be summarized in the following terms. 
Referring to condition (2.3), arising as integrability conditions from (2.1), which expresses 
the compatibility of a metric g with V, one might hope that g would be determined up to a 

function multiple if indeed such a g exists. In many cases this is true but in one respect it 
is false. This exceptional case is covered by Theorem 5.1 with its manifold hypotheses and 

conditions. The remarks of this last paragraph apply specifically to the n = 3 case. 
A few more remarks are needed to put Theorem 5.1 - the main result of the paper - 

into context. The holonomy groups and their Lie algebras for metrics in general and three- 

dimensional metrics in particular are considered in Besse [1 ]. All the Lie subalgebras of 
0(3) and 0(2, 1) are known and each is the Lie algebra of the holonomy group of some 
metric. We shall need to quote the following facts. First of all, the Lie algebra is trivial if 
and only if the metric is flat. Secondly, the Lie algebra is one-dimensional if and only if 
either (M 3, g) factors locally as a product of a non-flat two-dimensional metric and (fiat) 

one-dimensional metric or else g is Lorentzian and possesses a parallel null vector field. 
See also [8,13,14]. In these respective cases coordinates (t, x, z) may be introduced relative 
to which the metric g assumes the forms: 

g = c(t)(dt)  2 + a(x,  z)(dx) 2 + 2h(x, z) dx dz + b(x,  z)(dz) 2, (1.1) 

g = 2 dt dz + a(x,  z)(dx) 2 + 2h(x, z) dx dz q- b(x, z)(dz) 2, (1.2) 

where in (1.1) c(t) is nowhere vanishing as is ab - h 2 in both (1.1) and (1.2). Thirdly, the 
only case in which the Lie algebra is two-dimensional is when g admits a local parallel line 
distribution: this is equivalent to the existence of a recurrent vector field, say A, that cannot 
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be scaled even locally so as to obtain a parallel vector field. In this case the metric may be 

written locally as in (1.2) except now that b will also depend on t. 

Recall that a tensor field T of any type is said to be recurrent if the tensor field VT 

satisfies 

V T = 0 ® T  (1.3) 

for some one-form 0. If T is A then (1.3) implies that 

R(X, y ) A  = d0(X, Y)A 1.4) 

for all vector fields X and Y. One sees that a recurrent A may be scaled locally to gwe a 

parallel vector field if and only if 0 is closed. 

In practical terms, the Lie algebra of the holonomy group is computed from the curvature 

and its covariant derivatives. To be specific one considers the endomorphisms R(X, Y), 

V z R ( X ,  Y), V w V z R ( X ,  Y) . . . . .  for arbitrary vector fields W, X, Y and Z. All of these 

endomorphisms are skew-adjoint relative to the metric g if Vis  Levi-Civita as is the com- 

mutator of any two such endomorphisms. Actually one has to exercise some caution here. 

At any point of M the preceding collection of endomorphisms will generate a Lie algebra 

which, if V is Levi-Civita, will be a subalgebra of the Lie algebra of the associated orthog- 

onal group. The unique connected Lie group determined by the algebra of endomorphisms 

is called the infinitesimal holonomy group and is a subgroup of the full holonomy group. 

In this paper it will be assumed that M is connected and simply connected and that the 

infinitesimal holonomy group has constant dimension over M and hence coincides with the 

full holonomy group. For further discussion of these points see I11]. 

In Theorem 5. l we shall consider linear subspaces of such endomorphisms. The subspaces 

generated by R, the first covariant derivatives of R and the second covariant derivatives of 

R are denoted simply by R, VR and V2R, respectively, in Theorem 5.1. These latter spaces 

consist simply of linear spans not commutators. 

An outline of the paper is as follows. In Section 2 we reconsider the classical prescriptive 

solution to the problem. In Section 3 we specialize to the three-dimensional case and argue 

that there are two subcases according to whether the Ricci tensor K has rank one or two. 

Sections 4-6 are devoted to the rank(K) = 1 situation and Section 7 to rank(K) ---- 2. The- 

orem 5.1 characterizes the exceptional metrics which are determined by second derivatives 

of R. The main result of Section 7 asserts that the direct product examples are the only ones 

when rank(K) = 2. 
It should be mentioned finally that considerable effort has been devoted to the study of 

the metric existence problem in the physically interesting case of dimension four. The three- 

dimensional case, however, is sufficiently complicated to make it worthwhile to discuss it 
separately. The four-dimensional case will be revisited in a future article where some of the 

points raised by Edgar [5,6] will also be addressed. 
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2. A prescriptive solution to the problem 

Let V be a symmetric connection on an n-dimensional manifold M. Later on, where n 
plays a role, we shall write M n instead of M and the majority of the paper is concerned 

with the case where n is three. We are looking for a metric g that is compatible with V and 

we regard the compatibility conditions 

Vg = 0 (2.1) 

as a system of partial differential equations with unknowns the components of  g. By "differ- 

entiating and equating mixed partials", one obtains the following well-known integrability 

conditions for (2.1): 

g(Z, )R(X,  Y ) W  + g(W,  )R(X,  Y)Z  ---- 0, (2.2) 

where W, X, Y and Z are arbitrary vector fields on M. In (2.2) g(Z, ) for example, is a 

one-form applied to the vector field which follows it. 
Let us abbreviate (2.2) simply to 

g o R + ( g o R )  t = 0 .  (2.3) 

By covariantly differentiating (2.3) repeatedly we obtain a sequence of  linear algebraic 

conditions that we write 

g o VR + (g o VR)  t = 0, 
g o V2R -k- (g o V2R) t = 0, 
. (2.4) 

g o VI:R + (g o VkR) t = 0. 

We can now reproduce the classical prescriptive solution to the general problem in n- 

dimensions. A similar discussion may be found in various classical sources -  see for example 
Eisenhart [7]. According to our regularity hypothesis, (2.3) and (2.4) constitute a homoge- 
neous linear system which, at some stage must stabilize; that is, either the system contains 

sufficiently many conditions that zero is the only solution or else for some value of k, there 
is a basis of  non-zero solutions that remain solutions at the (k + 1)st stage and hence all 
higher-order stages. In the former case V admits no compatible metric. In the latter case V 
will admit a metric if and only if in the span of the basic solutions there is a non-degenerate 

solution ~. 
Now ~ is not yet necessarily a metric compatible with g. To construct such a metric, and 

indeed the most general such metric, weight a basis of  solutions by function coefficients 
chosen so that the resulting linear combination is parallel. This construction yields a first- 
order system of partial differential equations, which is in fact, a completely integrable total 
differential system. Thus having once solved the algebraic system (2.3) and (2.4) one obtains 
a multi-parameter family of  metrics compatible with V. 

The preceding "procedure" does not give a solution in closed form. About all that can be 

said is that since g has (n  + I  ) components, in (2.3)-(2.4) it is necessary to differentiate 
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at most ( n + I ) times. A better solution would be one that answers the metric existence 

problem purely in terms of properties of  V, R and the higher-order covaraint derivatives of 

R. Such an optimal situation exists in the case when n is two [12]. 

T h e o r e m  2.1. Local necessary and sufficient conditions for a non-fiat, symmetric connec- 

tion V on M 2 to be the Levi-Civita connection of a metric g are that the Ricci tensor of 

V should be: 

(i) symmetric and non-degenerate, 

(ii) recurrent. 

Furthermore if M 2 is simply-connected, g exists globally. 

Let us return to the previous discussion and in arbitrary dimension consider an important 

special case. 

T h e o r e m  2.2. Suppose that for M n the solution space to (2.3)-(2.4) consists of multiples 

of a non-degenerate form ~,. Then ~, is recurrent and there exists a function L such that ~, 

is parallel. 

Proof Suppose that system (2.3)-(2.4) "stabilizes" at stage k so that the (k ÷ l)st-order 

covariant derivative conditions are linear combinations of lower-order conditions. Then we 

have 

o VkR + (~ o VkR) t = 0. (2.5) 

Covariantly differentiating (2.5) we obtain 

V~ o VkR + (V~ o VkR) t + g o v k + I R  + (g o v k + I R )  t = 0. (2.6) 

But we have identically 

~, o v k + l R  ÷ (g o vk+ lR) t  = 0 (2.7) 

and hence 

V~ o Vk R + (V~ o V k  R)  t ---- O. (2.8) 

Since the solution space to (2.3)-(2.4) is spanned by ~, we can only have 

V~ = 0 ® ~ (2.9) 

for some one-form 0. Thus ~, is recurrent. 
Now if X, Y denote arbitrary vector fields (2.9) gives 

V x V r ~  - V r V x g  - V[x,r]g = dO(X, Y)~. (2.10) 

On the other hand, Ricci 's identities applied to the left-hand side of  (2.10) give 

[ v x v r ~  - v y v x ~  - v t x , r d ]  ( z ,  w )  

= - ( ~ ( W ,  R(X, Y)Z)  4- g,(Z, R(X,  Y)W)),  (2.1 t) 
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where Z and W are further arbitrary vector fields. But ~ satisfies (2.3) so the right-hand 

side of  (2.1 l) is zero. Thus by (2.10), 0 is closed and hence ~ can be scaled by ~. so as to 

obtain a parallel form. [] 

An important practical consequence of  Theorem 2.2 is that if one is seeking a metric 

compatible with V and in solving (2.3)-(2.4) one reduces to a one-dimensional space 

spanned by ~, one simply checks whether ~ is recurrent. Clearly this is much easier than 

constructing Vk+lR and then verifying the skew-adjointness conditions. 

3. The three-dimensional case 

Let us now consider the three-dimensional case. Then (2.3) implies that R has trace zero 

and if R is not zero, that it has rank two. (More precisely, for arbitrary vector fields X 

and Y, each of  the endomorphisms R(X, Y) has trace zero and rank two.) Considering the 

possible non-zero Jordan normal forms for R, one sees that the solution space to (2.4) is 

0, 1 or 2-dimensional, respectively. In case it is 0, no metric exists and if it is 1, the existence 

question is answered by Theorem 2.2. 

It remains to consider the case where (2.4) has a two-dimensional solution space. In each 

of  the three subcases corresponding to the Jordan normal form of R, this space possesses 

a non-degenerate form. Furthermore, the curvature matrices must span a one-dimensional 

space and since they are of  rank 0 or 2, they must possess a common kernel spanned by a 

vector field that we denote by A. Thus for arbitrary vector fields X and Y, R satisfies 

R(X, Y)A : 0. (3.1) 

If  the connection V is to be metric it follows from (3. l) also that 

R(A,  X)Y  = 0. (3.2) 

Condition (3. l) in addition implies that R(X, Y )Z  is orthogonal to A for all vector fields 

X, Y and Z. Furthermore, if K denotes the Ricci tensor of  V then (3.1) entails that 

K(X,  .4) = 0 (3.3) 

for arbitrary vector fields X. Of course, K must also be symmetric if V is to be metric. 
The following lemmas inform us about the solutions to (2.4). 

L e m m a  3.1. If  the solution space to (2.4) is two-dimensional and V is to be metric then K 
must be a solution to (2.4). 

Proof Choose a moving frame (Ei) with E1 given by .4. Then in components, K assumes 
the form 
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Ii ° °  K = R323 -R223 (3.4) 

--R223 --R223 

The result now follows from (3.1) and (3.2). [] 

Next suppose that a metric g indeed has been found that is compatible with V. Denote 

the one-form dual to A via g by ~. 

L e m m a  3.2. The symmetric square of or satisfies (2.4). 

Proof Let W, X, Y and Z be arbitrary vector fields. Then 

ot(X)ot(Y) = g(A, X)g(A, Y). (3.5) 

Denote e~(X)ot(Y) by h(X,  Y). Then 

(h o R)(X, Y)(Z, W) = g( A, R(X, Y)Z)g( A, W) 

= - g ( Z ,  R(X, Y)A)g(A, W) 

=0.  

Thus h satisfies (2.4) a fortiori. [] 

The discussion now divides into two parts according as the rank of K is one or two. 

4. Rank o fK : 1: Necessary conditions 

In the case where the rank of K is one, Lemmas 3.1 and 3.2 imply that there exists some 

nowhere vanishing function ~. such that for arbitrary vector fields X and Y 

K(X, Y) = )~g(A, X)g(A, Y). (4.1) 

Clearly then (3.3) entails that A is null and hence also that Vx A ~ D for all vector fields 

X, where D denotes the distribution orthogonal to A. Furthermore, the scalar curvature of 

g must be zero. 

We shall establish two facts about the distribution D. 

Proposition 4.1. The degenerate distribution of K coincides with D. 

Proof Let Y be an arbitrary vector field. Then X belongs to the degenerate distribution of 
K iff 

Zg(A, X)g(A, Y) : 0 (4.2) 

in view of  (3.5). Since Y is arbitrary and 2. non-zero, this is in turn equivalent to 

g(A, X) = 0. E] 
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Proposition 4.2. The distribution D is integrable if and only if A is a pre-geodesic, that 
is, V A A is a multiple of A. 

Proof Suppose that X is tangent to D, that is, 

g(A, X) = 0. (4.3) 

Covariantly differentiating along A one obtains 

g(VAX,  A) + g(X,  VAA) = 0. (4.4) 

Next, using the fact that A is null and that V is symmetric we obtain 

g(X,  VAA) + g(A, [A, X]) = 0. (4.5) 

Now if D is integrable the second term above is zero and hence V,aA is orthogonal to D, 

that is, proportional to A. The converse is apparent from (4.5). [] 

Note also that from (3.3), (3.5) and the fact that A is null we find that K (Vx A, Y) vanishes 
for all vector fields X and Y. 

Let us recall the following formula valid for three-dimensional metric manifolds X, Y and 
Z being arbitrary vector fields, r the scalar curvature and G the metric inverse 

to g: 

R(X,  Y ) Z  = K ( X , Z ) Y  - K(Y ,  Z )X  + g ( X , Z ) ( G  o K(Y) )  

- g ( Y ,  Z)(G o K(X)) - ½r(g(X, Z )Y  - g(Y, Z)X) .  (4.6) 

As we stated at the start of this section, r must be zero hence from (4.1) we obtain 

R(X, Y)Z = 3.{g(A, X)(g( A, Z) Y - g(Y, Z)A) 

--g(A, y ) (g(A,  Z ) X  - g(X,  Z)A)}. (4.7) 

Introducing a fourth vector field W, we find from (4.7) that the covariant derivative Vw R 
is given by 

(Vw R)(X,  Y ) Z  = (WX/X)R(X,  Y )Z  

+,k{(g(A, Y)g(X,  Z) -- g( A, X)g(Y ,  Z))VwAI 

+(g(Vw A, Y)g( X, Z) - g(Vw A, X)g(Y ,  Z) ) A 

--(g(Vw A, y)g(  A, Z) + g( A, Y)g(Vw A, Z) ) X 

+(g(Vw A, X)g(  A, Z) + g( A, X)g(Vw A, Z))YI. (4.8) 

One consequence of (4.8) is that 

VAR(X,  Y )Z  = (A)~/X)R(X, Y)Z.  (4.9) 
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From (4.8) one may construct the second Bianchi identity for V. On replacing Z by A 

and making use of  the identity 

dee(X, Y) = (Vx~)(Y) - (Vyot)(X), 

one obtains the condition 

(c~ m dct)(W, X, Y) = 0, 

(4.10) 

(4.11) 

where t~ is the one-form dual to A via g. Thus the one-form a and the distribution D are 

integrable. In addition by Proposition 4.2, A is a pre-geodesic and hence may be scaled 

locally so as to obtain a bona fide geodesic field. 

We continue by deriving further necessary conditions for the existence of a metric g 

compatible with V. 

Proposi t ion 4.3. Let W, X, Y be arbitrary vector fields and Z c D. Then Vw R(X, Y)Z 

is a multiple of A. 

Proof First of  all note that in light of  (4.6) and (4.7) we have 

Vw R(X, Y)Z  -- M(g(A,  Y)g(X,  Z) - g( A, X)g(Y,  Z))Vw A 

+ g ( V w  A, Z)(g(  A, X)Y  -- g( A, Y)X)}, (4.12) 

where the congruence denotes working modulo multiples of  A. Now consider 

g(Z, V w R ( X ,  Y)Z)  

= £{((g(A, Y)g(X,  Z) - g(A, X)g(Y,  Z))g(Z,  VwA))  

+ g ( V w  A, Z)(g(  A, X)g(Y,  Z) - g( A, Y )g( X, Z))} = 0. (4.13) 

Since D is two-dimensional and contains A it follows that V w R ( X ,  Y)Z is a multiple 

of A. [] 

We have seen that the curvature matrices alone span a one-dimensional space. In view of 

Proposition 4.3 and the assumption that K is symmetric, it follows that the curvature and 

first covariant derivatives span precisely a two-dimensional space. Indeed if it were one- 

dimensional the infinitesimal holonomy group too would be one-dimensional and, locally 

at least, a metric g compatible with V would possess a parallel, null vector field. The fact 

that R and its first covariant derivatives span at most a two-dimensional space bearing in 

mind that any solution to (2.4) must be a trace-free matrix of even rank, follows from 

Proposition 4.3. 
Let us take note of  the following identities that follow from (3.2), (4,7), the fact that A 

is pre-geodesic and the use of  Ricci's identities to commute the order of  covariant differen- 
tiation, V, W, X, Y and Z denoting arbitrary vector fields: 

Vz~R(X, Y)Z = ( A £ / £ ) R ( X ,  Y)Z,  (4.14) 

Vw R( A, Y)Z  = - R ( V w  A, Y)Z, (4.15) 
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V A V w R ( X ,  Y)Z  = W(AX/X)R(X ,  Y)Z  + (A~ /X)VwR(X ,  Y)Z, (4.16) 

Vv Vw R( A, Y)Z = - Vv(  R(Vw A, Y)Z), (4.17) 

V v V w R ( X ,  Y)A ~ D. (4.18) 

Next recall from Section 2 that the infinitesimal holonomy group in view of (3.1) cannot 
be two-dimensional. Since it can be at most three-dimensional it must be precisely three- 

dimensional and must be spanned by R and its first- and second-covariant derivatives. 

We derive one further necessary condition for the existence of g. To this end, note that 

V v V w R ( X ,  Y) - V v w v R ( X ,  Y), where V, W, X and Y are arbitrary vector fields, must 
be skew-adjoint relative to any putative metric g compatible with V. It follows that this 
quantity, interpreted as an endomorphism field, must have even rank and in particular must 
be singular. (The reason that we consider this quantity rather than Vv Vw R(X, Y) is that 

this latter quantity is not tensorial in W.) 

5. Rank  of  K = 1: Sufficient condit ions 

In this section we combine several of the necessary conditions derived in the previous 

section with some others so as to obtain a set of conditions that are necessary and sufficient 

for the existence of a metric g that is compatible with V. Let us state formally the following 
theorem. 

Theorem 5.1. Let V be a symmetric connection on M 3 whose associated Ricci tensor K has 

rank one and let the degenerate distribution of K be denoted by D. Assume that V possesses 

no parallel vector field and that Eq. (2.4) does determine a non-degenerate quadratic 

form which is not unique up to multiples. Then the following conditions are necessary and 

sufficient for the existence of a metric g that is compatible with V (U, V, W, X and Y 

denoting arbitrary vector fields): 

1. There exists a vectorfield A such that R(X,  Y)A = R(A, X)Y = O. 

2. K is symmetric. 

3. D is integrable. 

4. K ( V x  A, Y) = O. 

5. V a R ( X ,  Y)V is a multiple of R(X,  Y)V. 

6. Vw R(X,  Y)Z  is a multiple of A where Z ~ D. 

7. The endomorphism 7v  Vw R(X,  Y) - VVw v R(X,  Y) is singular. 

8. All commutators of R and V R as well as all commutators of V R and V R, lie in the 

space spanned by R: symbolically [R, VR] C R and [VR, VR] C R. 
9. All commutators of R and V2R lie in the space spanned by R and V2 R: symbolically 

[R, V2R] C span(R, VR). 

Proof It appears to be necessary to give the proof in terms of local coordinates. We choose 
a coordinate system (x i) in which A is represented by O/Ox 1 . Then by condition (1), Rjk l 
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vanishes whenever j ,  k or I takes the value 1. Furthermore, since K is symmetric and has 

rank one and since D is integrable by (3.4), we may assume that R2~t and R23~t are all zero. 

We now adopt the procedure described in Section 2 to ascertain the existence of  a metric 

g. Indeed the algebraic solution to (2.4) may be written in the form 

r - R123 

R 2 -R~23 323 
R 230 +s[i 0 

0 

(5.1) 

1 1 1 1 (5.5) 

But (5.5) is easily seen to be precisely the condition that [VR, VR] C R and hence (5.5) is 

satisfied because of  condition (8). 
Eq. (5.4) now determines our putative metric g up to a multiple. It remains to check 

that the skew-adjointness conditions are satisfied for the second-order covariant derivatives 
of R. Notice that by virtue of  conditions (4) and (6), Eq. (4.1 8) holds, or equivalently, 

R 3 vanishes. Also we have the following identity that results from condition (1) by lkl;mn 
differentiating twice: 

Vv  Vw R(  A, Y )U  = Vv  R ( V w  A, Y )U  - Vw R ( V v  A, Y )U  

- R ( V v  Vw A, Y)U. (5.6) 

Let us now consider the covariant derivatives of  R. In view of  (4.15), which follows from 

conditions (1) and (4) if suffices to consider R~kl; m with m taking on the values 2 and 3 and 

k -- 2 and I = 3. Note that the symmetry of  K entails that R i (sum over i) must be ikl;m 
zero. Next because of  condition (5), R)23; m with m = 2 or 3 is necessarily of  the form 

- 1 1 R~23;m 1 R123:m R223;m 
2 0 0 --R3z3;m/ . (5.2) 

/ 

0 0 -R~23:mJ 

On putting r = 1 in (5.1) and demanding that (5.1) be skew-adjoint relative to (5.2) we 

obtain the conditions: 

1 2 1 1 2 1 
R223R323:rn -- R323RI23; m - R323R223; m = 0, (5.3) 

1 2 2 1 
s R123:rn "q- R323 R323; m - R323 R323; m = O. (5.4) 

An elementary calculation reveals that (5.3) is equivalent to the condition that a commutator 

of  elements of  R and VR lie in R, that is, [R, VR] C R. Hence (5.3) is satisfied by virtue 

of  condition (8). 

Turning to (5.4), there is just a single curvature condition obtained by setting m -- 2 

then m = 3 and eliminating s between the resulting equations. On making use of  (5.3) this 

single condition may be written as 
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Thus the skew-adjointness condition for VvVwR(A ,  Y)U is a consequence of that for R 
and V R. 

Similarly, if we write the function of proportionality implicit in condition (5) in the form 
A~./X so as to agree with the notation of Section 5, we find on differentiation 

VwVz~R(X, Y)U = W R(X, Y)U + - - zVwR(X ,  Y)U, (5.7) 

so that the left-hand side of  (5.6) satisfies the skew-adjointness conditions. Furthermore, 

making use of  Ricci 's identity, namely, 

VvVwR(X ,  Y)U - VwVvR(X ,  Y)U 

= Vlv, w]R(X, Y)U + R(V, W)R(X, Y)U - R(R(X, V), Y)U 

- R ( X ,  R(Y, V)W)U - R(X, Y)R(V, W)U, (5.8) 

and replacing U by A, we see that the skew-adjointness conditions are satisfied by 

VAVwR(X,  Y)U as well. 
From the preceding considerations we only have to check the skew-adjointness conditions 

for the matrices R~23;klWith(k, l) = (2, 2), (k, l) = (2, 3) and (k, l) = (3, 3). These skew- 
adjointness conditions turn out to be: 

2 3 1 2 
R323 R223;kl -- R223 R123;kl = 0,  (5.9) 

1 2 1 2 
R323R223;kl q- R223R223;kl = 0 ,  ( 5 . 1 0 )  

1 3 2 2 
R323R123;kl + R323R223;kl = 0 ,  (5 .1  1) 

2 1 1 2 1 1 3 
R323R223;kl - R223R323;kl + R323R123;kl + sR223;kl = 0, (5.12) 

2 1 1 2 3 
R323R323;kl -- R323R323;kl q- sR323;kl = 0 ,  (5.13) 

where s is determined from (5.4). 

With regard to (5.9)-(5.1 1) note that algebraically only two independent conditions 
appear. Moreover, it is easy to check that these conditions are identically satisfied in virtue 

of  (5.2) and the zero components of  R itself. (For instance condition (6) implies that 

2 1 3 2 
~ . k R 2 2 3  - -  -F'i2R323 = 0 (k = 2 , 3 ) .  (5.14) 

Also one finds that 

R323;2 kl r,3 !-,3 •2 = - - "  2k" 211~323 , (5.15) 

etc.) 

Turning to (5.12), this is equivalent to condition (9). The argument for this is similar to 
the one that shows that (5.3) and (5.4) are equivalent to condition (9) making use also of 
(5.14) and (5.15). 

Finally, we show that (5.12) is satisfied. Taking into account (5.9)-(5.11), (5.12) may be 
written in the form 
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[R 1 R 3 _ R  1 R 3 ] 
R223 1 1 2 R~23 L 323 223;kl 223 323;klJ 3 

R223;kl -- R223R323;kl + R123 + sR223;kl : O. 

(5.16) 

Now use condition (7), which implies that R~23;k/ has determinant zero and recall that its 
trace is also zero. Combining these two facts with (5.15) gives (5.12) as claimed. [] 

6. Metrics and connections corresponding to Theorem 5.1 

Are there indeed connections that satisfy the many hypotheses of  Theorem 5.1 ? We shall 

answer this question affirmatively beginning with the following result. 

Proposition 6.1. Let A be a vector field on a manifold with a metric g and suppose that A 

is geodesic and satisfies R (X ,  Y ) A  = O. Then the third Lie derivative o f  g with respect to 

A is zero. 

Proof  Starting from the identity 

(Lzag)(X, Y) = g ( V x  A, Y) + g ( S ,  VyA),  

using R(X ,  Y ) A  = 0 and the fact that A is geodesic we find that 

(L2~g)(X, Y) = 2g (VxA,  V~A). 

Differentiating (6.2) and using (6.2) again we find immediately 

( L 3 g ) ( X ,  Y) = O. [] 

(6.1) 

(6.2) 

(6.3) 

To construct the desired metric g, we introduce coordinates (t, x, z) in which A is O/Ot 

and the orthogonal distribution D of ,4, necessarily integrable, is spanned by O/Ot and O/Ox. 

Furthermore, the non-zero components of  g may be assumed to be quadratic in t in view of 
Proposition 6.1. We may also make coordinate changes of  the form 

[ = q~(x,z)t + O(x,z) ,  ~ = )~(x, z), ~ = z (x , z ) ,  (6.4) 

which will preserve the restrictions already imposed on g. Accordingly g may be assumed 

to be of  the local form 

g - -  (At e + 2Dt  + H)(dx)  2 + 2(Ct  2 + 2Et  + F) dx dz 

+ ( B t  2 + 2Gt + K)(dz)  2 + 2 d z d t ,  (6.5) 

where A is unity or zero and B, C . . . . .  K are functions of x and z. 
After a lengthy calculation involving computing the Levi-Civita connection of g given by 

(6.5) and the corresponding curvature tensor, one finds that all the conditions of  Theorem 
5.1 are satisfied if and only if, after an appropriate coordinate transformation, g is given by 

g = (dx) 2 + 2 C t 2 d x d z  + (C2t 2 - 2Cxt)(dz)  2 + 2 dz dr, (6.6) 
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where C is a non-zero function o f x  and z. Thus (6.6) and its associated connection provide 

a local coordinate normal form for a metric and connection of the type occurring in 
Theorem 5.1. 

7. R a n k  o f  K = 2 

In the case where K is of  rank two a metric g compatible with V must be of  the form 

2K(X,  Y) 
g(X,  Y) -- + izg(A, X)g (A ,  Y) (7.1) 

r 

for some nowhere vanishing functions r and #.  By scaling A we may assume that # is 
-4-1 in (7.1) and correspondingly that A has squared length +1.  By replacing g by - g  we 

may assume further that g(A,  A) are #, are both unity. In this case r represents the scalar 

curvature of  g in (7.1). Note that A cannot be null or else g would be degenerate. 
Assuming then that/z is unity in (7.1) it follows that 

G o K = ½r(l - A ® g(A,--)).  (7.2) 

Substituting (7.2) into (4.6) we obtain 

R(X,  Y ) Z  = K (X, Z ) Y  - K (Y, Z ) X  

+½r(g(A, X)g(Y ,  Z) - g(A,  Y)g(X,  Z ) )A .  (7.3) 

From (6.3) and with W another field we find 

Vw R(S ,  Y ) Z  = (Vw K (X, Z) ) Y - (Vw K (Y, Z) )X 

+ ( W r / r ) ( R ( X ,  Y )Z  - K(X,  Z ) Y  -4- K(Y,  Z )X)  

+½r(g(Vw A, X)g(Y,  Z) - g (Vw A, Y)g(X,  Z ) )A  

+½r(g( A, X)g(Y,  Z) - g( A, Y)g(X,  Z ) )Vw A. (7.4) 

Again putting Z = A in the second Bianchi identity and using the fact that 

V r K ( W ,  A) -- V w K ( Y ,  A) = ½r(g(Y, Vw A) - g(W,  VyA))  (7.5) 

we find that the analog of  (4.1 l) is 

dot(Y, W ) X  + d~(X,  Y ) W  + d~(W, X ) Y  - ot A dc~(X, Y, W ) A  = O, (7.6) 

beihg the one-form dual to A. 

In (7.6) X, Y and W are arbitrary. Let us put W = A in (7.6), use (4.10) and also the fact 
that g(A,  A) is unity to obtain 

dot(Y, A) = --g(Vza A, y)  

and hence since X and Y remain arbitrary 

VzaA = 0 .  

(7.7) 

(7.8) 
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Thus A is a geodesic field. 

Next, rewrite (7.6) in terms of g as 

(g(Vy A, W) - g(Y, Vw A) ) (X  -- g( A, X )A)  

+(g(VwA,  X) - g(W, Vx A))(Y - g(A,  Y)A)  

+(g(Vx A, Y) - g(X, VyA))(W - g(A, W)A) = 0. (7.9) 

In view of the fact that A has length unity and is geodesic (7.9) is in turn equivalent to 

(g(VyA, W) - g(Y, Vw A) )X  + (g(Vw A, X) - g(W, VxA))Y 

+ ( g ( V x A ,  Y) - g(X, Vr A))W = 0. (7.10) 

Since W, X and Y are arbitrary in (7.10) it follows that 

g(Vx A, Y) - g(X, Vr A) = 0 (7.11) 

for arbitrary X and Y. Thus the two-dimensional distribution D orthogonal to A is integrable. 

Consider next the one-form g(A, ). We find that its Lie derivative along A is given by, 
X denoting an arbitrary vector field, 

LA(g(A,  ))X = g(VAA,  X) + g(A, V x A )  (7.12) 

and hence LA(g(A,  )) is zero. From (7.1) one thus obtains 

2 ( L A K  A R K ) .  (7.13) 
LAg = r r 

On the other hand let us compute the Lie derivative of R from (7.3), namely, 

(LAR)(X,  Y)Z = (LAK(X ,  z ) ) r  - (LAK(Y ,  Z ) )X  
Ar 

+ - - ( R ( X ,  Y)Z  - K(X,  Z)Y  + K(Y,  Z)X) .  (7.14) 
r 

Taking the trace in (7.14) we obtain 

LAK = ( A r / r ) K .  (7.15) 

From (7.13) and (7.15) it follows that 

LAg = 0, (7.16) 

that is, A is necessarily a Killing vector field. In conjunction with (7.11), this latter fact 

entails that ,4 is a parallel vector field and hence, since A is non-null, the de Rham theorem 
implies that (M 3, g) admits a local product decomposition. 

In summary we have the following theorem. 

Theorem 7.1. Suppose that V is a symmetric connection on M 3 whose Ricci tensor K has 

rank two and that Eq. (2.4) does determine a non-degenerate quadratic form which is not 

unique up to multiples. Then if V is to be metric, this metric and hence V must factor 

locally as a de Rham product of one- and two-dimensional constituents. 
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As a consequence of  Eq. (4.1) and Theorem 7.1 we can reach the following conclusion. 

Corol lary  7.2. If  V is a symmetric connection on M 3 and V is to be the Levi-Civita 

connection of a Riemannian metric then g is determined by R alone in the sense of 

Theorem 2.2. [] 

We can also obtain the following result easily. 

Theorem 7.3. Suppose that V is a symmetric connection on M 3. Then V is locally the Levi- 

Civita connection of a de Rham product of  a one-dimensional and non-flat two dimensional 

metric manifolds iff the following conditions are satisfied, W, X, Y, Z denoting arbitrary 

vector fields: 

(i) K(X,  Y) = K(Y,  S), 

(ii) rank of K = 2, 

(iii) K is recurrent, that is, there is a one-form 0 such that V K = 0 ® K, 

(iv) R(X,  Y )Z  = K(X ,  Z )Y  - K(Y,  Z)X.  

Proof The given conditions are all clearly necessary. Conversely, starting from (iii) one 

finds that 

V x V y K  - V r V x K  - VIx, r ]K  = dO(X, Y)K.  (7.17) 

On the other hand, we also have identically that 

( V x V y K  - V y V x K  - VIx, y]K)(Z, W) 

= K(Z,  ) • R(X,  Y ) W -  K(W,  )R(X,  Y)Z  (7.18) 

(cf. (5.8)). From conditions (i) and (iv) we find that the left-hand side of  (7.18) and hence 

of  (7.17) vanishes. Thus 0 is closed and locally we may write for some function f 

0 = df .  (7.19) 

Now we observe that 

V ( e - f K )  = e - f ( V K  - d f  ® K) = 0. (7.20) 

We define a distribution D spanned by the image of  all vector fields R (X, Y) Z. Note that 
in view of  (iii) and (iv), R is recurrent and hence D is integrable. We also choose a vector 
field A that spans the degenerate distribution of  K and note that since K is recurrent so too 
is .4. "Indeed write 

V.4 = ~o ® .4 (7.21) 

for some one-form tp. Now by virtue of  (iv) we find that 

R(X, Y).4 = 0. (7.22) 

From (7.21) and (7.22) it follows that ~o is closed and hence .4 may be locally rescaled so 
as to give a parallel vector field that we continue to denote by .4. 
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Now define a metric g on M 3 by  declar ing A to have uni t  length, A and D to be orthogonal  

and on D define g to be e - f  K.  We show that V is compat ible  with g, hence by the uniqueness  

aspect of  the fundamenta l  l emma  of  pseudo-Riemann ian  geometry,  V must  be the Levi- 

Civita connect ion  of  g. 

Clearly, since e - f K  is parallel, we need only check that the one-form g (A ,  ) is parallel. 

First of  all note that since A is parallel, 

( V x ( g ( A , ) ) ) Y  = X ( g ( A ,  Y)) - g (A ,  V x Y ) .  (7.23) 

If  Y is A then clearly the r ight-hand side of  (7.23) is zero. On the other hand, if Y 6 D 

the r ight-hand side of  (7.23) is also zero since Y is orthogonal  to A and D is a parallel 

distribution. This is sufficient to show that g (A ,  ) is parallel. D 
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